toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Trivedi, Mahendra Kumar; Nayak, Gopal; Patil, Shrikant; Tallapragada, Rama Mohan; Latiyal, Omprakash url  doi
openurl 
  Title Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano Powders after Bio field Treatment Type Journal Article
  Year 2015 Publication Industrial Engineering & Management Abbreviated Journal  
  Volume 4 Issue 3 Pages  
  Keywords Biofield treatment; Iron oxide; Copper oxide; Zinc oxide; X-ray diffraction; FT-IR  
  Abstract Transition metal oxides (TMOs) have been known for their extraordinary electrical and magnetic properties. In the present study, some transition metal oxides (Zinc oxide, iron oxide and copper oxide) which are widely used in the fabrication of electronic devices were selected and subjected to biofield treatment. The atomic and crystal structures of TMOs were carefully studied by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) studies. XRD analysis reveals that biofield treatment significantly changed the lattice strain in unit cells, crystallite sizes and densities in ceramics oxide powders. The computed molecular weight of the treated samples exhibited significant variation. FT-IR spectra indicated that biofield treatment has altered the metal-oxygen bond strength. Since biofield treatment significantly altered the crystallite size, lattice strain and bond strength, we postulate that electrical and magnetic properties in TMOs (transition metal oxides) can be modulated by biofield treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano Powders after Bio field Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-0316 ISBN Medium  
  Area Materials Science Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 42872  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Bairwa, Khemraj; Jana, Snehasis url  doi
openurl 
  Title Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment Type Journal Article
  Year 2015 Publication Journal of Analytical & Bioanalytical Techniques Abbreviated Journal  
  Volume 6 Issue 5 Pages  
  Keywords Disulfiram; Nicotinic acid; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy  
  Abstract Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and treated groups of both drugs were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disulfiram showed the shifting in wavenumber of C-H stretching from 1496 to 1506 cm-1 and C-N stretching from 1062 to 1056 cm-1. The intensity of S-S dihedral bending peaks (665 and 553 cm-1) was also increased in biofield treated disulfiram sample, as compared to control. FT-IR spectra of biofield treated nicotinic acid showed the shifting in wavenumber of C-H stretching from 3071 to 3081 cm-1 and 2808 to 2818 cm-1. Likewise, C=C stretching peak was shifted to higher frequency region from 1696 cm-1 to 1703 cm-1 and C-O (COO-) stretching peak was shifted to lower frequency region from 1186 to 1180 cm-1 in treated nicotinic acid.

UV spectrum of control and biofield treated disulfiram showed similar pattern of UV spectra. Whereas, the UV spectrum of biofield treated nicotinic acid exhibited the shifting of absorption maxima (λmax) with respect of control i.e., from 268.4 to 262.0 nm, 262.5 to 256.4, 257.5 to 245.6, and 212.0 to 222.4 nm.

Over all, the FT-IR and UV spectroscopy results suggest an impact of biofield treatment on the force constant, bond strength, and dipole moments of treated drugs such as disulfiram and nicotinic acid that could led to change in their chemical stability as compared to control.
 
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-9872 ISBN Medium  
  Area Pharmaceuticals Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 42943  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Bairwa, Khemraj; Jana, Snehasis url  doi
openurl 
  Title Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment Type Journal Article
  Year 2015 Publication Journal of Analytical & Bioanalytical Techniques Abbreviated Journal  
  Volume 6 Issue 5 Pages  
  Keywords Disulfiram; Nicotinic acid; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy  
  Abstract Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and treated groups of both drugs were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disulfiram showed the shifting in wavenumber of C-H stretching from 1496 to 1506 cm-1 and C-N stretching from 1062 to 1056 cm-1. The intensity of S-S dihedral bending peaks (665 and 553 cm-1) was also increased in biofield treated disulfiram sample, as compared to control. FT-IR spectra of biofield treated nicotinic acid showed the shifting in wavenumber of C-H stretching from 3071 to 3081 cm-1 and 2808 to 2818 cm-1. Likewise, C=C stretching peak was shifted to higher frequency region from 1696 cm-1 to 1703 cm-1 and C-O (COO-) stretching peak was shifted to lower frequency region from 1186 to 1180 cm-1 in treated nicotinic acid.

UV spectrum of control and biofield treated disulfiram showed similar pattern of UV spectra. Whereas, the UV spectrum of biofield treated nicotinic acid exhibited the shifting of absorption maxima (λmax) with respect of control i.e., from 268.4 to 262.0 nm, 262.5 to 256.4, 257.5 to 245.6, and 212.0 to 222.4 nm.

Over all, the FT-IR and UV spectroscopy results suggest an impact of biofield treatment on the force constant, bond strength, and dipole moments of treated drugs such as disulfiram and nicotinic acid that could led to change in their chemical stability as compared to control.
 
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-9872 ISBN Medium  
  Area Pharmaceuticals Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 43164  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Bairwa, Khemraj; Jana, Snehasis url  doi
openurl 
  Title Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment Type Journal Article
  Year 2015 Publication Journal of Analytical & Bioanalytical Techniques Abbreviated Journal  
  Volume 6 Issue 5 Pages  
  Keywords Disulfiram; Nicotinic acid; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy  
  Abstract Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and treated groups of both drugs were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disulfiram showed the shifting in wavenumber of C-H stretching from 1496 to 1506 cm-1 and C-N stretching from 1062 to 1056 cm-1. The intensity of S-S dihedral bending peaks (665 and 553 cm-1) was also increased in biofield treated disulfiram sample, as compared to control. FT-IR spectra of biofield treated nicotinic acid showed the shifting in wavenumber of C-H stretching from 3071 to 3081 cm-1 and 2808 to 2818 cm-1. Likewise, C=C stretching peak was shifted to higher frequency region from 1696 cm-1 to 1703 cm-1 and C-O (COO-) stretching peak was shifted to lower frequency region from 1186 to 1180 cm-1 in treated nicotinic acid.

UV spectrum of control and biofield treated disulfiram showed similar pattern of UV spectra. Whereas, the UV spectrum of biofield treated nicotinic acid exhibited the shifting of absorption maxima (λmax) with respect of control i.e., from 268.4 to 262.0 nm, 262.5 to 256.4, 257.5 to 245.6, and 212.0 to 222.4 nm.

Over all, the FT-IR and UV spectroscopy results suggest an impact of biofield treatment on the force constant, bond strength, and dipole moments of treated drugs such as disulfiram and nicotinic acid that could led to change in their chemical stability as compared to control.
 
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-9872 ISBN Medium  
  Area Pharmaceuticals Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ alice @ Serial 43178  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Bairwa, Khemraj; Jana, Snehasis url  doi
openurl 
  Title Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment Type Journal Article
  Year 2015 Publication Chromatography Separation Techniques Abbreviated Journal  
  Volume 6 Issue 5 Pages  
  Keywords Disodium hydrogen phosphate; Sodium nitrate; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy  
  Abstract Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity, and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e., control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment. The spectral properties of control and treated groups of both compounds were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control) corresponding to O-H stretching from 2975 to 3357 cm-1, PO-H symmetrical stretching from 2359 to 2350 cm-1, O=P-OH deformation from 1717-1796 cm-1 to 1701-1735 cm-1, P=O asymmetric stretching from 1356 to 1260 cm-1 and P=O symmetric stretching from 1159 to 1132 cm-1, etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1 and NO3 asymmetric and symmetric stretchings from 1369 to 1381 cm-1 and 1340 to 1267 cm-1.

UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance maxima (λmax) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (λmax) at 209.2 nm after biofield treatment.

Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two orbitals (ground state and excited state) as compared to respective control.
 
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2157-7064 ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 42894  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Bairwa, Khemraj; Jana, Snehasis url  doi
openurl 
  Title Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment Type Journal Article
  Year 2015 Publication Chromatography Separation Techniques Abbreviated Journal  
  Volume 6 Issue 5 Pages  
  Keywords Disodium hydrogen phosphate; Sodium nitrate; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy  
  Abstract Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity, and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e., control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment. The spectral properties of control and treated groups of both compounds were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control) corresponding to O-H stretching from 2975 to 3357 cm-1, PO-H symmetrical stretching from 2359 to 2350 cm-1, O=P-OH deformation from 1717-1796 cm-1 to 1701-1735 cm-1, P=O asymmetric stretching from 1356 to 1260 cm-1 and P=O symmetric stretching from 1159 to 1132 cm-1, etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1 and NO3 asymmetric and symmetric stretchings from 1369 to 1381 cm-1 and 1340 to 1267 cm-1.

UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance maxima (λmax) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (λmax) at 209.2 nm after biofield treatment.

Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two orbitals (ground state and excited state) as compared to respective control.
 
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2157-7064 ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 42909  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Bairwa, Khemraj; Jana, Snehasis url  doi
openurl 
  Title Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment Type Journal Article
  Year 2015 Publication Chromatography Separation Techniques Abbreviated Journal  
  Volume 6 Issue 5 Pages  
  Keywords Disodium hydrogen phosphate; Sodium nitrate; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy  
  Abstract Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity, and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e., control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment. The spectral properties of control and treated groups of both compounds were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control) corresponding to O-H stretching from 2975 to 3357 cm-1, PO-H symmetrical stretching from 2359 to 2350 cm-1, O=P-OH deformation from 1717-1796 cm-1 to 1701-1735 cm-1, P=O asymmetric stretching from 1356 to 1260 cm-1 and P=O symmetric stretching from 1159 to 1132 cm-1, etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1 and NO3 asymmetric and symmetric stretchings from 1369 to 1381 cm-1 and 1340 to 1267 cm-1.

UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance maxima (λmax) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (λmax) at 209.2 nm after biofield treatment.

Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two orbitals (ground state and excited state) as compared to respective control.
 
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2157-7064 ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ alice @ Serial 42931  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Mishra, Rakesh; Jana, Snehasis url  doi
openurl 
  Title Spectral and Thermal Properties of Biofield Energy Treated Cotton Type Journal Article
  Year 2015 Publication American Journal of Energy Engineering Abbreviated Journal  
  Volume 3 Issue 6 Pages 86-92  
  Keywords Cotton; Biofield Energy Treatment; Thermal Analysis; Fourier Transform Infrared Spectroscopy; CHNSO Analysis  
  Abstract Cotton has widespread applications in textile industries due its interesting physicochemical properties. The objective of this study was to investigate the influence of biofield energy treatment on the spectral, and thermal properties of the cotton. The study was executed in two groups namely control and treated. The control group persisted as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. The control and treated cotton were characterized by different analytical techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared (FT-IR) spectroscopy, and CHNSO analysis. DSC analysis showed a substantial increase in exothermic temperature peak of the treated cotton (450 ºC) as compared to the control sample (382ºC). Additionally, the enthalpy of fusion (ΔH) was significantly increased by 86.47% in treated cotton. The differential thermal analysis (DTA) analysis showed an increase in thermal decomposition temperature of treated cotton (361ºC) as compared to the control sample (358ºC). The result indicated the increase in thermal stability of the treated cotton in comparison with the control. FT-IR analysis showed an alterations in –OH stretching (3408→3430 cm-1), carbonyl stretching peak (1713-1662 cm-1), C-H bending (1460-1431 cm-1), -OH bending (580-529 cm-1) and –OH out of plane bending (580-529 cm-1) of treated cotton with respect to the control sample. CHNSO elemental analysis showed a substantial increase in the nitrogen percentage by 19.16% and 2.27% increase in oxygen in treated cotton as compared to the control. Overall, the result showed significant changes in spectral and thermal properties of biofield energy treated cotton. It is assumed that biofield energy treated cotton might be interesting for textile applications.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectral and Thermal Properties of Biofield Energy Treated Cotton  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2329-1648 (Print); 2329-163X (Online) ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 43383  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Mishra, Rakesh; Jana, Snehasis url  doi
openurl 
  Title Spectral and Thermal Properties of Biofield Energy Treated Cotton Type Journal Article
  Year 2015 Publication American Journal of Energy Engineering Abbreviated Journal  
  Volume 3 Issue 4 Pages 86-92  
  Keywords Cotton; Biofield Energy Treatment; Thermal Analysis; Fourier Transform Infrared Spectroscopy; CHNSO Analysis  
  Abstract Cotton has widespread applications in textile industries due its interesting physicochemical properties. The objective of this study was to investigate the influence of biofield energy treatment on the spectral, and thermal properties of the cotton. The study was executed in two groups namely control and treated. The control group persisted as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. The control and treated cotton were characterized by different analytical techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared (FT-IR) spectroscopy, and CHNSO analysis. DSC analysis showed a substantial increase in exothermic temperature peak of the treated cotton (450 ºC) as compared to the control sample (382ºC). Additionally, the enthalpy of fusion (∆H) was significantly increased by 86.47% in treated cotton. The differential thermal analysis (DTA) analysis showed an increase in thermal decomposition temperature of treated cotton (361ºC) as compared to the control sample (358ºC). The result indicated the increase in thermal stability of the treated cotton in comparison with the control. FT-IR analysis showed an alterations in –OH stretching (3408→3430 cm-1), carbonyl stretching peak (1713-1662 cm-1), C-H bending (1460-1431 cm-1), -OH bending (580-529 cm-1) and –OH out of plane bending (580-529 cm-1) of treated cotton with respect to the control sample. CHNSO elemental analysis showed a substantial increase in the nitrogen percentage by 19.16% and 2.27% increase in oxygen in treated cotton as compared to the control. Overall, the result showed significant changes in spectral and thermal properties of biofield energy treated cotton. It is assumed that biofield energy treated cotton might be interesting for textile applications.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectral and Thermal Properties of Biofield Energy Treated Cotton  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2329-1648 (Print); 2329-163X (Online) ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ alice @ Serial 43420  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Mishra, Rakesh; Jana, Snehasis url  doi
openurl 
  Title Spectral and Thermal Properties of Biofield Energy Treated Cotton Type Journal Article
  Year 2015 Publication American Journal of Energy Engineering Abbreviated Journal  
  Volume 3 Issue 6 Pages 86-92  
  Keywords Cotton; Biofield Energy Treatment; Thermal Analysis; Fourier Transform Infrared Spectroscopy; CHNSO Analysis  
  Abstract Cotton has widespread applications in textile industries due its interesting physicochemical properties. The objective of this study was to investigate the influence of biofield energy treatment on the spectral, and thermal properties of the cotton. The study was executed in two groups namely control and treated. The control group persisted as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. The control and treated cotton were characterized by different analytical techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared (FT-IR) spectroscopy, and CHNSO analysis. DSC analysis showed a substantial increase in exothermic temperature peak of the treated cotton (450 ºC) as compared to the control sample (382ºC). Additionally, the enthalpy of fusion (ΔH) was significantly increased by 86.47% in treated cotton. The differential thermal analysis (DTA) analysis showed an increase in thermal decomposition temperature of treated cotton (361ºC) as compared to the control sample (358ºC). The result indicated the increase in thermal stability of the treated cotton in comparison with the control. FT-IR analysis showed an alterations in –OH stretching (3408→3430 cm-1), carbonyl stretching peak (1713-1662 cm-1), C-H bending (1460-1431 cm-1), -OH bending (580-529 cm-1) and –OH out of plane bending (580-529 cm-1) of treated cotton with respect to the control sample. CHNSO elemental analysis showed a substantial increase in the nitrogen percentage by 19.16% and 2.27% increase in oxygen in treated cotton as compared to the control. Overall, the result showed significant changes in spectral and thermal properties of biofield energy treated cotton. It is assumed that biofield energy treated cotton might be interesting for textile applications.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Spectral and Thermal Properties of Biofield Energy Treated Cotton  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2329-1648 (Print) 2329-163X (Online) ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 43427  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: