toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Saikia, Gunin; Jana, Snehasis url  doi
openurl 
  Title Quantitative Determination of Isotopic Abundance Ratio of 13C, 2H, and 18O in Biofield Energy Treated Ortho and Meta Toluic Acid Isomers Type Journal Article
  Year 2015 Publication American Journal of Applied Chemistry Abbreviated Journal  
  Volume 3 Issue 6 Pages 217-223  
  Keywords Biofield Energy Treatment; o-Toluic Acid; m-Toluic Acid; Gas Chromatography-Mass Spectrometry  
  Abstract O-Toluic acid (OTA) and m-toluic acid (MTA) are two isomers of toluic acid that act as an important organic intermediates, mostly used in medicines and pesticides. The aim of the study was to evaluate the impact of biofield energy treatment on isotopic abundance ratios of 2H/1H, 13C/12C, (PM+1)/PM and 18O/16O, (PM+2)/PM, in toluic acid isomers using gas chromatography-mass spectrometry (GC-MS). The OTA and MTA samples were divided into two parts: control and treated. The control sample remained as untreated, while the treated sample was further divided into four groups as T1, T2, T3, and T4. The treated group was subjected to biofield energy treatment. The GC-MS spectra of both the isomers showed five m/z peaks due to the molecular ion peak and fragmented peaks of toluic acid derivatives. The isotopic abundance ratio of (PM+1)/PM and (PM+2)/PM were calculated for both the isomers and found significant alteration in the treated isomers. The isotopic abundance ratio of (PM+1)/PM in treated samples of OTA was decreased and then slightly increased upto 2.37% in T2, where the (PM+2)/PM in treated OTA, significantly decreased by 55.3% in T3 sample. Similarly, in case of MTA, the isotopic abundance ratio of (PM+1)/PM in the treated sample showed a slight increase the (PM+2)/PM was decreased by 11.95% in T2 as compared to their respective control. GC-MS data suggests that the biofield energy treatment on toluic acid isomers had significantly altered the isotopic abundance of 2H, 13C, and 18O in OTA and MTA as compared to the control.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Quantitative Determination of Isotopic Abundance Ratio of 13C, 2H, and 18O in Biofield Energy Treated Ortho and Meta Toluic Acid Isomers  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-8753 (Print); 2330-8745 (Online) ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 43435  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Saikia, Gunin; Jana, Snehasis url  doi
openurl 
  Title Quantitative Determination of Isotopic Abundance Ratio of 13C, 2H, and 18O in Biofield Energy Treated Ortho and Meta Toluic Acid Isomers Type Journal Article
  Year 2015 Publication American Journal of Applied Chemistry Abbreviated Journal  
  Volume 3 Issue 6 Pages 217-223  
  Keywords Biofield Energy Treatment; o-Toluic Acid; m-Toluic Acid; Gas Chromatography-Mass Spectrometry  
  Abstract O-Toluic acid (OTA) and m-toluic acid (MTA) are two isomers of toluic acid that act as an important organic intermediates, mostly used in medicines and pesticides. The aim of the study was to evaluate the impact of biofield energy treatment on isotopic abundance ratios of 2H/1H, 13C/12C, (PM+1)/PM and 18O/16O, (PM+2)/PM, in toluic acid isomers using gas chromatography-mass spectrometry (GC-MS). The OTA and MTA samples were divided into two parts: control and treated. The control sample remained as untreated, while the treated sample was further divided into four groups as T1, T2, T3, and T4. The treated group was subjected to biofield energy treatment. The GC-MS spectra of both the isomers showed five m/z peaks due to the molecular ion peak and fragmented peaks of toluic acid derivatives. The isotopic abundance ratio of (PM+1)/PM and (PM+2)/PM were calculated for both the isomers and found significant alteration in the treated isomers. The isotopic abundance ratio of (PM+1)/PM in treated samples of OTA was decreased and then slightly increased upto 2.37% in T2, where the (PM+2)/PM in treated OTA, significantly decreased by 55.3% in T3 sample. Similarly, in case of MTA, the isotopic abundance ratio of (PM+1)/PM in the treated sample showed a slight increase the (PM+2)/PM was decreased by 11.95% in T2 as compared to their respective control. GC-MS data suggests that the biofield energy treatment on toluic acid isomers had significantly altered the isotopic abundance of 2H, 13C, and 18O in OTA and MTA as compared to the control.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Quantitative Determination of Isotopic Abundance Ratio of 13C, 2H, and 18O in Biofield Energy Treated Ortho and Meta Toluic Acid Isomers  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-8753 (Print) 2330-8745 (Online) ISBN Medium  
  Area Organic Compounds Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 43495  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Latiyal, Omprakash; Jana, Snehasis url  doi
openurl 
  Title Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium Type Journal Article
  Year 2015 Publication Vitamins & Minerals Abbreviated Journal  
  Volume 4 Issue 3 Pages  
  Keywords Biofield treatment; Magnesium powder; X-ray diffraction; Fourier transform infrared; Particle size; Surface area  
  Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. XRD data showed that biofield treatment has altered the lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of treated magnesium powder, as compared to control. In addition, the crystallite size of treated magnesium was significantly reduced up to 16.70, 16.70, and 28.59% on day 7, 41 and 63 respectively as compared to control. Besides this, the surface area of treated magnesium powder was increased by 36.5 and 10.72% on day 6 and 72 respectively, whereas it was reduced by 32.77% on day 92 as compared to control. In addition, biofield treatment has also altered the particle sizes d10, d50, and d99 (size, below which 10, 50, and 99% particles were present, respectively) as compared to control. Overall, data suggest that biofield treatment has substantially altered the atomic and physical properties of treated magnesium powder.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2376-1318 ISBN Medium  
  Area Nutraceuticals Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 42891  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Latiyal, Omprakash; Jana, Snehasis url  doi
openurl 
  Title Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium Type Journal Article
  Year 2015 Publication Vitamins & Minerals Abbreviated Journal  
  Volume 4 Issue 3 Pages  
  Keywords Biofield treatment; Magnesium powder; X-ray diffraction; Fourier transform infrared; Particle size; Surface area  
  Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. XRD data showed that biofield treatment has altered the lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of treated magnesium powder, as compared to control. In addition, the crystallite size of treated magnesium was significantly reduced up to 16.70, 16.70, and 28.59% on day 7, 41 and 63 respectively as compared to control. Besides this, the surface area of treated magnesium powder was increased by 36.5 and 10.72% on day 6 and 72 respectively, whereas it was reduced by 32.77% on day 92 as compared to control. In addition, biofield treatment has also altered the particle sizes d10, d50, and d99 (size, below which 10, 50, and 99% particles were present, respectively) as compared to control. Overall, data suggest that biofield treatment has substantially altered the atomic and physical properties of treated magnesium powder.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2376-1318 ISBN Medium  
  Area Nutraceuticals Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 42902  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Latiyal, Omprakash; Jana, Snehasis url  doi
openurl 
  Title Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium Type Journal Article
  Year 2015 Publication Vitamins & Minerals Abbreviated Journal  
  Volume 4 Issue 3 Pages  
  Keywords Biofield treatment; Magnesium powder; X-ray diffraction; Fourier transform infrared; Particle size; Surface area  
  Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. XRD data showed that biofield treatment has altered the lattice parameter, unit cell volume, density, atomic weight, and nuclear charge per unit volume of treated magnesium powder, as compared to control. In addition, the crystallite size of treated magnesium was significantly reduced up to 16.70, 16.70, and 28.59% on day 7, 41 and 63 respectively as compared to control. Besides this, the surface area of treated magnesium powder was increased by 36.5 and 10.72% on day 6 and 72 respectively, whereas it was reduced by 32.77% on day 92 as compared to control. In addition, biofield treatment has also altered the particle sizes d10, d50, and d99 (size, below which 10, 50, and 99% particles were present, respectively) as compared to control. Overall, data suggest that biofield treatment has substantially altered the atomic and physical properties of treated magnesium powder.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2376-1318 ISBN Medium  
  Area Nutraceuticals Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ alice @ Serial 42927  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Latiyal, Omprakash; Jana, Snehasis url  doi
openurl 
  Title Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder Type Journal Article
  Year 2015 Publication Journal of Material Sciences & Engineering Abbreviated Journal  
  Volume 4 Issue 6 Pages  
  Keywords Indium; Biofield energy treatment; X-Ray Diffraction; Differential Scanning Calorimetry; Thermogravimetric Analysis; Fourier Transform Infrared Spectroscopy  
  Abstract Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated indium samples were characterized by the X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD diffractogram showed the shifting of peaks toward higher Bragg’s angles in the treated indium sample as compared to the control. The crystallite size of treated indium sample were substantially changed from -80% to 150.2% after biofield energy treatment, as compared to control. In addition, the biofield energy treatment has altered the lattice parameter (-0.56%), unit cell volume (-0.23%), density (0.23%), atomic weight (-0.23), and nuclear charge per unit volume (1.69%) of the treated indium sample with respect to the control. The DSC showed an increase in the latent heat of fusion up to 3.23% in the treated indium sample with respect to control. Overall, results suggest that biofield energy treatment has substantially altered the atomic, physical, and thermal properties of treated indium powder. Therefore, the treated indium could be utilized in thermal interface material in semiconductor industries.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-0022 ISBN Medium  
  Area Materials Science Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 43286  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Latiyal, Omprakash; Jana, Snehasis url  doi
openurl 
  Title Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder Type Journal Article
  Year 2015 Publication Journal of Material Sciences & Engineering Abbreviated Journal  
  Volume 4 Issue 6 Pages  
  Keywords Indium; Biofield energy treatment; X-Ray Diffraction; Differential Scanning Calorimetry; Thermogravimetric Analysis; Fourier Transform Infrared Spectroscopy  
  Abstract Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated indium samples were characterized by the X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD diffractogram showed the shifting of peaks toward higher Bragg’s angles in the treated indium sample as compared to the control. The crystallite size of treated indium sample were substantially changed from -80% to 150.2% after biofield energy treatment, as compared to control. In addition, the biofield energy treatment has altered the lattice parameter (-0.56%), unit cell volume (-0.23%), density (0.23%), atomic weight (-0.23), and nuclear charge per unit volume (1.69%) of the treated indium sample with respect to the control. The DSC showed an increase in the latent heat of fusion up to 3.23% in the treated indium sample with respect to control. Overall, results suggest that biofield energy treatment has substantially altered the atomic, physical, and thermal properties of treated indium powder. Therefore, the treated indium could be utilized in thermal interface material in semiconductor industries.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language Original Title Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-0022 ISBN Medium  
  Area Materials Science Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ gopal @ Serial 43293  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Tallapragada, Rama Mohan; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Latiyal, Omprakash; Jana, Snehasis url  doi
openurl 
  Title Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder Type Journal Article
  Year 2015 Publication Journal of Material Sciences & Engineering Abbreviated Journal  
  Volume 4 Issue 6 Pages  
  Keywords Indium; Biofield energy treatment; X-Ray Diffraction; Differential Scanning Calorimetry; Thermogravimetric Analysis; Fourier Transform Infrared Spectroscopy  
  Abstract Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated indium samples were characterized by the X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD diffractogram showed the shifting of peaks toward higher Bragg’s angles in the treated indium sample as compared to the control. The crystallite size of treated indium sample were substantially changed from -80% to 150.2% after biofield energy treatment, as compared to control. In addition, the biofield energy treatment has altered the lattice parameter (-0.56%), unit cell volume (-0.23%), density (0.23%), atomic weight (-0.23), and nuclear charge per unit volume (1.69%) of the treated indium sample with respect to the control. The DSC showed an increase in the latent heat of fusion up to 3.23% in the treated indium sample with respect to control. Overall, results suggest that biofield energy treatment has substantially altered the atomic, physical, and thermal properties of treated indium powder. Therefore, the treated indium could be utilized in thermal interface material in semiconductor industries.  
  Address  
  Corporate Author Thesis  
  Publisher Omics Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-0022 ISBN Medium  
  Area Materials Science Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ alice @ Serial 43315  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Mishra, Rakesh; Jana, Snehasis url  doi
openurl 
  Title Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Medium Type Journal Article
  Year 2015 Publication American Journal of Bioscience and Bioengineering Abbreviated Journal  
  Volume 3 Issue 6 Pages 169-177  
  Keywords Biofield Energy Treatment; Peptone; Malmgren Modified Terrestrial Orchid; Thermal Analysis  
  Abstract Peptone and Malmgren modified terrestrial orchid (MMTO) has been used as a growth medium for tissue culture applications. This research study was conducted to explore the influence of Mr. Trivedi’s biofield energy treatment on physicochemical properties of peptone and MMTO. The study was performed in two groups i.e. control and treated. The control group was kept aside as untreated, and the treated group was received the biofield energy treatment. The control and treated samples were further subjected to characterization by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, particle size analyzer and surface area analyzer. The XRD analysis revealed the amorphous nature of the control and treated peptone samples. The DSC analysis showed an increase in thermal denaturation temperature of the treated peptone (196.22°C) as compared to the control sample (141.20°C). Additionally, the exothermic peak of treated sample (280°C) was increased as compared to the control (270°C). The DSC of control and treated MMTO showed the absence of the melting temperature in their respective DSC thermograms. The TGA analysis of the treated peptone showed an increase in onset of thermal degradation (172°C) with respect to the control (170°C). Nevertheless, the TGA thermogram of the treated MMTO (293.96°C) showed an increase in maximum thermal degradation temperature (Tmax) as compared with the control (281.41°C). It indicated the good thermal stability of the treated peptone and MMTO samples. The FT-IR result of the treated peptone showed an upward shift in C-H (2817→2833 cm-1), and amide I (1635→1641 cm-1), stretching in the treated sample with respect to the control sample. Whereas, the FT-IR spectrum of the treated MMTO showed an increase in the frequency of the C-H (2817→2833 cm-1) and amide I (1596→1606 cm-1) bands as compared to the control. Particle size analysis of the treated peptone showed an increase in d50 (average particle size) and d99 (size exhibited by 99% of particles) by 9.3 and 41.4%, respectively with respect to the control. Surface area analysis showed increase in surface area by 4.3% in the treated peptone. Altogether, the results corroborated that the biofield energy treatment had altered the physical, thermal and spectral properties of peptone and MMTO. It is assumed that biofield treated peptone and MMTO could be utilized as potential candidates for cell culture applications.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Medium  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2328-5885 (Print); 2328-5893 (Online) ISBN Medium  
  Area Biotechnology Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ dahryn @ Serial 43469  
Permanent link to this record
 

 
Author Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal; Mishra, Rakesh; Jana, Snehasis url  doi
openurl 
  Title Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Medium Type Journal Article
  Year 2015 Publication American Journal of Bioscience and Bioengineering Abbreviated Journal  
  Volume 3 Issue 6 Pages 169-177  
  Keywords Biofield Energy Treatment; Peptone; Malmgren Modified Terrestrial Orchid; Thermal Analysis  
  Abstract Peptone and Malmgren modified terrestrial orchid (MMTO) has been used as a growth medium for tissue culture applications. This research study was conducted to explore the influence of Mr. Trivedi’s biofield energy treatment on physicochemical properties of peptone and MMTO. The study was performed in two groups i.e. control and treated. The control group was kept aside as untreated, and the treated group was received the biofield energy treatment. The control and treated samples were further subjected to characterization by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, particle size analyzer and surface area analyzer. The XRD analysis revealed the amorphous nature of the control and treated peptone samples. The DSC analysis showed an increase in thermal denaturation temperature of the treated peptone (196.22°C) as compared to the control sample (141.20°C). Additionally, the exothermic peak of treated sample (280°C) was increased as compared to the control (270°C). The DSC of control and treated MMTO showed the absence of the melting temperature in their respective DSC thermograms. The TGA analysis of the treated peptone showed an increase in onset of thermal degradation (172°C) with respect to the control (170°C). Nevertheless, the TGA thermogram of the treated MMTO (293.96°C) showed an increase in maximum thermal degradation temperature (Tmax) as compared with the control (281.41°C). It indicated the good thermal stability of the treated peptone and MMTO samples. The FT-IR result of the treated peptone showed an upward shift in C-H (2817→2833 cm-1), and amide I (1635→1641 cm-1), stretching in the treated sample with respect to the control sample. Whereas, the FT-IR spectrum of the treated MMTO showed an increase in the frequency of the C-H (2817→2833 cm-1) and amide I (1596→1606 cm-1) bands as compared to the control. Particle size analysis of the treated peptone showed an increase in d50 (average particle size) and d99 (size exhibited by 99% of particles) by 9.3 and 41.4%, respectively with respect to the control. Surface area analysis showed increase in surface area by 4.3% in the treated peptone. Altogether, the results corroborated that the biofield energy treatment had altered the physical, thermal and spectral properties of peptone and MMTO. It is assumed that biofield treated peptone and MMTO could be utilized as potential candidates for cell culture applications.  
  Address  
  Corporate Author Thesis  
  Publisher Science Publishing Group Place of Publication United States Editor  
  Language English Summary Language English Original Title Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Medium  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2328-5885 (Print); 2328-5893 (Online) ISBN Medium  
  Area Biotechnology Expedition Conference  
  Notes Approved yes  
  Call Number Trivedi Global Inc. @ alice @ Serial 43533  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: